AQA

A-LEVEL MATHEMATICS

Pure Core 2 - MPC2
Mark scheme

6360

June 2014

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1(a)	$\begin{aligned} (\text { Area }=) & \frac{1}{2} \times 5 \times 12 \times \sin 47 \\ & =21.94 \ldots=22\left(\mathrm{~cm}^{2}\right) \end{aligned}$	M1 A1	2	$\frac{1}{2} \times 5 \times 12 \times \sin A$ stated or used Correct area. If not 22 condone 21.9... NMS 22 or 'better' scores 2 marks
(b)	$\begin{aligned} \left(B C^{2}=\right. & =5^{2}+12^{2}-2 \times 5 \times 12 \times \cos 47 \\ & =25+144-81.8(39 . .) \\ & (=87.16 . .) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \end{aligned}$		RHS of cosine rule used correctly Correct evaluation of the three terms. PI by eg evaluation to a value 87 to 88 inclusive or correct final answer
	$B C=9.3(359 \ldots)=9.3(\mathrm{~cm})$	A1	3	If not 9.3 accept 9.34 or 9.33 or 9.33...
	Total		5	
(a)	Condone absent/incorrect units throughout this question. Candidates who find a perpendicular height do not score the M1 until 1/2base×height used ie the equivalent of $\frac{1}{2} \times 5 \times 12 \times \sin A$.			
(a)(b)	Cand who uses 47 rads can score a max of (a) M1A0 (b) M1m0A0			
(b)	Example: $169-120 \cos 47(\mathrm{M} 1)=49 \cos 47(\mathrm{~m} 0)=33.4$.			
(b)	$5^{2}+12^{2}-2 \times 5 \times 12 \times \cos 47$ (M1); (BC=) 9.3	(m1A1)		

Q	Solution	Mark	Total	Comment
2(a)	$\int\left(1+3 x^{\frac{1}{2}}+x^{\frac{3}{2}}\right) \mathrm{d} x=x+2 x^{1.5}+\frac{2}{5} x^{2.5}(+c)$	B1; B1 B1	3	ACF B1 for each correct term. Condone missing $+c$. (Can be left unsimplified)
(b)(i)	$(n=) 3$	B1	1	Correct value of n. Condone ' $3 y^{2}$,
(b)(ii)	$(1+\sqrt{x})^{3}=1+3 \sqrt{x}+3 \sqrt{x}^{2}+\sqrt{x}^{3}$	B1F	1	Correct four term expansion ft c 's n. Allow 'correct' alternatives eg $1+3 x^{1 / 2}+" 3^{\prime \prime} x+x^{3 / 2}$
(c)	$\begin{aligned} & \int(1+\sqrt{x})^{3} \mathrm{~d} x=\int\left(1+3 x^{\frac{1}{2}}+" 3^{"} x+x^{\frac{3}{2}}\right) \mathrm{d} x \\ & =x+2 x^{1.5}+\frac{" 3 " x^{2}}{2}+\frac{2}{5} x^{2.5}(+c) \end{aligned}$	B1F		Correct integration. If not correct, ft on c's answer to (a) $+\frac{n x^{2}}{2}$ for c's value of n in (b)(ii).
	$\begin{aligned} & \int_{0}^{1}(1+\sqrt{x})^{3} \mathrm{~d} x= \\ & 1+2(1)^{1.5}+\frac{3(1)^{2}}{2}+\frac{2}{5}(1)^{2.5}-(0) \end{aligned}$	M1		PI Attempt to find $\mathrm{F}(1)-\mathrm{F}(0)$ following 'attempt' at integration. Condone the ' $-(0)$ ' missing if cand's $\mathrm{F}(x)$ leads to $F(0)=0$.
	$=\frac{49}{10}(=4.9)$	A1	3	OE correct value. NMS ie 4.9 without any other work in (c) scores $0 / 3$
	Total		8	
$\begin{aligned} & \text { (c) } \\ & \text { (c) } \end{aligned}$	Apply ISW after a correct answer but do no simplification in (a) has been used in (c) an Allow M1 PI if cand. has evaluated $\mathrm{F}(1)-$ If 4.9 follows from incorrect working then	award t marked (0) corre 0 FIW	$\begin{aligned} & \text { B1F in } \\ & \text { s 3/3 IS } \\ & \text { ly for th } \end{aligned}$	c) if, for example, an incorrect in (a). ir $\mathrm{F}(\mathrm{x})$, following integration.

Q	Solution	Mark	Total	Comment
3(a)	$\left\{S_{\infty}=\right\} \frac{a}{1-r}=\frac{54}{1-\frac{8}{9}}$	M1		$\frac{a}{1-r}$ used with $a=54$ and $r=8 / 9$ OE
	$\left\{S_{\infty}=\right\} 486$	A1	2	Correct exact value for S_{∞}. 486 scores 2 marks unless rounding of a value to 486 seen in which case M1A0.
(b)	\{2nd term =\} ar = 48	B1	1	Correct value for 2nd term
(c)	\{12th term $=\}$ ar ${ }^{12-1}$	M1		ar ${ }^{12-1}$ stated or used. PI by $14.7(8 \ldots$)
	$=54 \times\left(\frac{8}{9}\right)^{11}=2 \times 3 \times 3 \times 3 \times\left(\frac{2 \times 2 \times 2}{3 \times 3}\right)^{11}$	m1		Changing at least two of 54 and 8 and 9 in correct expression to correct products/powers of 2 and 3
	$=\frac{2 \times 3^{3} \times\left(2^{3}\right)^{11}}{\left(3^{2}\right)^{11}}$			
	$=\frac{3^{3} \times 2^{34}}{3^{22}}=\frac{2^{34}}{3^{19}} \quad(p=34, q=19)$	A1	3	Showing 12th term $=\frac{2^{34}}{3^{19}}$ in a convincing manner
	Total		6	
(a)	Accept 0.8 or 0.9 or better as an OE to $8 / 9$ or 0.2 or 0.1 or better as OE to $1-8 / 9$ but a must be 54 (No MR)			
(c)	$54 \times \frac{8}{9}^{11}(\mathrm{M} 1)$			
(c)	$54 \times\left(\frac{8}{9}\right)^{11} \quad \text { (M1) }=54 \times\left(\frac{8}{3^{3}}\right)^{11}=2 \times 3$	$3 \times 3 \times$	$\frac{\times 2 \times 2}{3^{3}}$	(m1) since 54 and 8 have been written
	as correct products of 2 and 3 starting with	orrect	pressio	$54 \times\left(\frac{8}{9}\right)^{11}$

Q	Solution	Mark	Total	Comment
5	$\begin{aligned} & (\text { Area of sector })=\frac{1}{2} r^{2} \theta \\ & \frac{1}{2} r^{2} \theta=12 \end{aligned}$ $\text { (Arc length) }=r \theta$ $r+r+r \theta=4 r \theta$ $3 r \theta=2 r \Rightarrow \theta=\frac{2}{3}$ $\frac{1}{3} r^{2}=12 \Rightarrow r=6$	M1 A1 M1 m1 A1 A1	6	$\frac{1}{2} r^{2} \theta$ seen, or used, for the sector area $\frac{1}{2} r^{2} \theta=12$ OE $r \theta$ seen, or used, for the arc length $r+r+r \theta=4 r \theta$ OE in terms of r and θ or used with their value of $r \theta$. $\theta=\frac{2}{3}$. Condone 0.66 or 0.67 or better PI by eg $\frac{1}{3} r^{2}=12$ OE $r=6$ only with no evidence of a value seen being rounded to 6 .
	Total		6	
	Example: $\frac{1}{2} r^{2} \theta=12$ (M1A1) $r \theta=4 r \theta$ (M1m0) Example: $r+r+r \theta=4 r \theta$ (M1m1) $\theta=0.67$ (A1) $r^{2} \theta=12$ (M0A0) Example: $\frac{1}{2} r^{2} \theta=12$ (M1A1) $2 r+r \theta=4 r \theta$ (M1 m1) $2 r^{2}+r^{2} \theta=4 r^{2} \theta, 2 r^{2}+24=96$, $2 r^{2}=72$ (A1) $\Rightarrow r= \pm 6$ (A0, since -6 still present)			

Q	Solution	Mark	Total	Comment
6(a)		B2,1,0	2	Ignore parts of graph outside $0^{\circ} \leq x \leq 360^{\circ}$. B2: Correct graph including correct intersections and stationary points at/close to 90° and 270° with correct y values, 1 and -1 stated. If not B2 then award B1 for correct shape graph with either (i) at least 4 of the 5 critical points (intersections and stationary points) having x-coords. drawn within tolerance or (ii) at least 3 of the 5 critical points (intersections and stationary points) having x-coords. drawn within tolerance and y values, 1 and -1 stated for max and min respectively
(b)	Stretch (I) in x-direction (II) scale factor $\frac{1}{5}$ (III)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Need (I) and either (II) or (III) Need (I) and (II) and (III) More than one transformation scores 0/2.
(c)	Translation $\left[\begin{array}{c}-2^{\circ} \\ 0\end{array}\right]$	E2,1,0	2	E2: 'translat...' and $\left[\begin{array}{c}-2 \\ 0\end{array}\right]$ OE. If not E2 award E1for either 'translat... 2 in x-dir' OE. or 'translat...' and $\left[\begin{array}{c}-10 \\ 0\end{array}\right]$ OE. More than one transformation scores $0 / 2$.
	Total		6	
(a)	For guidance, 'close to' means max pt is vertically above any part of the printed ' 90° ' and min pt is vertically below any part of the printed ' 270° '. As a guideline, generally accept graph through 180 and 360 if graph goes through the printed x-axis markers at these points.			
(b)				
(c)	Lots of "correct" answers: eg translate 70° in x-direction \{in fact any eg reflect in $x=17^{\circ}$ \{in fact any reflection in	$\begin{aligned} & \text { anslation } \\ & x=17(\mathrm{moc} \end{aligned}$	$\begin{aligned} & \text { f }-2(1 \\ & 136)^{\circ} \mathrm{w} \end{aligned}$	d72) ${ }^{\circ}$ in x-direction would be correct $\}$ ld be correct $\}$
(c)	Examples: 'translate horizontally 2’ scores E1; 'translating horizontally -2 ' scores E2; 'translated 2 in negative x ' scores E2 If using 'reflection' if not E2 then award E1 for eg 'reflection in $x=19$ ' OE (ie correct 17 replaced by 19)			

Q	Solution	Mark	Total	Comment
8(a)	$\begin{aligned} & {\left[\mathrm{S}_{5}=\right] \frac{5}{2}[2 a+(5-1) d]} \\ & \frac{5}{2}[2 a+(5-1) d]=575 ; 5(2 a+4 d)=575 \times 2 \end{aligned}$	M1 m1		$\frac{5}{2}[2 a+(5-1) d] \quad \mathrm{OE}$ Forming correct eqn and attempt to remove fraction or expand brackets or better
	$2 a+4 d=115 \times 2 \Rightarrow a+2 d=115$	A1	3	AG $a+2 d=115$ convincingly obtained
(b)	$\begin{aligned} & a+(10-1) d=87 \\ & a+2 d=115, \quad a+9 d=87 \Rightarrow 7 d=87-115 \\ & 7 d=-28, \quad d=-4 \end{aligned}$	M1 m1 A1	3	$87=a+(10-1) d \mathrm{OE}$ Solving $a+2 d=115$ simultaneously with $a+9 d=87$ as far as eliminating either a or d. $d=-4$
(c)	When $d=-4, a=123$	B1F		Correct value of a or correct ft value for a. Ft only on $a=115-2 \times$ cand's d
	$\begin{aligned} & u_{k}=123+(k-1)(-4)>0 \\ & u_{k+1}=123+(k)(-4)<0 \end{aligned}$	M1		Either inequality, ft c's values for a and d. Condone equality and also n written for k.
	$k<31.75, k>30.75 \Rightarrow k=31$	E1		Justification of $k=31$ with no errors seen in relevant working and $k=31$ stated or used.
	$\sum_{n=1}^{31} u_{n}=\frac{31}{2}[2 a+(31-1) d]$	M1		$\sum_{n=1}^{31} u_{n}=\frac{31}{2}[2 a+(31-1) d]$ OE Must be using 31 for n.
	= 1953	A1	5	$\sum_{n=1}^{k} u_{n}=1953$ dep. on previous B1FM1M1 being awarded
	Total		11	
(b)	Cand who recognises (a) answer as 3rd term = 115: $115+7 d=87$ (M1m1) $d=-4$ (A1)			
(c)	Can award the B1F for the value of a if seen in (b) with no contradiction in (c).			
(c)	Examples sufficient for the E1: $123+(k-1)(-4)>0, k<31.75, \Rightarrow k=31$ (E1);			
	(T\&I approach) M1 for either $u_{31}=3$ or $u_{32}=-1$			
(c)	Example $123+(n-1)(-4)=0$ (M1), $n=31.75$ (no E yet) and $\boldsymbol{d}<\mathbf{0}$ (OE) so $n=31$ (E1)			
	An OE for $2^{\text {nd }} \mathrm{M} 1$ is $\sum_{n=1}^{31} u_{n}=\frac{31}{2}[a+3]$			

